
5)

© Charles University in Prague – The Karolinum Press, Prague 2005

Prague Medical Report / Vol. 106 (2005) No. 1, p. 5–26

Abstract: At the time when most of image data in hospitals are stored in digital

form using picture archiving and communication systems (PACS), telemedicine

goes through its boom, and demand for data storage and bandwidth requirements

increases, lossy compression techniques become necessity. This review article

summarizes different methods for quality measurement of image compression in

radiology. After brief compression techniques description, technical and medical

measurements (including Receiver Operating Characteristic Curves) of image

compression are described. Employing of these methods in practice and their

results are shown on sample studies. The article concludes with basic

recommendations for experimental protocols when performing quality

measurement of medical images.
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Introduction

The objective of radiological image compression is to reduce the volume of data

and to achieve a low bit rate in the digital representation of radiological images

without perceived loss of image quality. However, the demand for transmission

bandwidth and storage space in the digital radiology environment, especially

picture archiving and communication systems (PACS) and teleradiology, and the

proliferating use of various imaging modalities, such as magnetic resonance

imaging, computed tomography, ultrasonography, nuclear medicine, computed

radiography, digital subtraction angiography, positron emission tomography, single

photon emission computerised tomography, and digital fluorography continue to

outstrip the capabilities of existing technologies. The availability of lossy coding

techniques for clinical diagnoses further implicates many complex legal and

regulatory issues.

The overall goal of compression is to represent an image with the smallest

possible number of bits, or to achieve the best possible fidelity for an available

communication or storage bit rate capacity. A digital compression system typically

consists of a signal decomposition such as Fourier or wavelet, a quantization

operation on the coefficients, and finally lossless or entropy coding such as

Huffman or arithmetic coding. Decompression reverses the above process [1].

Compression techniques

Technically, all image data compression schemes can be broadly categorised into

two types. One is reversible compression, also referred to as “lossless”.

A reversible scheme achieves only modest compression ratios, but allows exact

recovery of the original image from the compressed version. Lossless coding

techniques (a predictive model, a multi-resolution model or both) are well

understood, readily available, e.g., [2–4], and typically yield compression ratios of

2:1 to 3:1 on still-frame medical images.

An irreversible scheme, or a “lossy” scheme (2D discrete cosine transform,

full-frame discrete cosine transform, lapped orthogonal transform, subband

coding, vector quantization, quadtrees, and adaptive predictive coding schemes)

[5–6], does not allow exact recovery after compression, but can achieve much

higher compression ratios, ranging from ten to fifty or more. Generally

speaking, more compression is obtained at the expense of more image

degradation, i.e., the image quality declines as the compression ratio increases.

Lossy coding is unavoidable if the original image is analogue, as is ordinary X-ray

film. Digitisation of an analog signal causes a loss of information and hence a

possible deterioration of the signal. Analog information is converted into a

relatively small number of bits. This operation is nonlinear and noninvertible.

The conversion can operate on individual pixels (scalar quantization) or groups

of pixels (vector quantization). Quantization is fundamentally lossy [7] and can

include throwing away some of the components of the signal decomposition
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step [8]. An advantage of a well-designed lossy compression system is that it

minimises information loss or image distortion for a given allotted storage space

or communication rate. When bits are scarce, good compression schemes

devote the available bits to the information of greatest importance. As a result,

lossy compression schemes are capable of enhancing specific structures of

importance to the viewer.

Another type of compression which is used in medical imaging is clinical image

compression, which stores a few medically relevant images, as determined by the

physicians, out of a series of real-time images and thus reduces the total image

size. The stored images may be further compressed [7].

Image degradation may be visually apparent. The term “visually lossless” has

been used to characterize lossy schemes that result in no visible loss under normal

radiological viewing conditions [6]. A related term used by the American College

of Radiology and National Electrical Manufacturing Association (ACR/NEMA) is

“information preserving.” The ACR/NEMA standard report defines a compression

scheme to be information preserving if the resulting image retains all of the

significant information of the original image. Both “visually lossless” and

“information preserving” are subjective definitions and extreme caution must be

taken in their interpretations [7].

Performance Measure of Image Compression

There are different ways for technical measuring image compression. The bit rate

of a compression system is the average number of bits produced by the encoder

for each image pixel. Compression ratios must be interpreted with care as they

depend crucially on the image type (most medical images are dominated by high

frequency regions against a flat, low frequency background), original bit rate,

sampling density, how much background is in the image, and how much coding of

the background figures into the calculation [1]. Compression ratio is defined as the

word-length of the image data divided by the bit-rate in b/pixel (bpp) of the

compressed data.

The instrumentation engineers characterise the digital image by three physical

parameters: density resolution, spatial resolution, and signal-to-noise ratio (SNR).

The density resolution is the total number of discrete grey level values in the

digital image, the spatial resolution measures the number of pixels used to

represent the objects. For two images of fixed density and spatial resolutions, a

high signal-to-noise ratio means that the image is very pleasing to the eyes.

Typically, a power spectrum is used to study the noise of reconstructed images.

The relationships between compression ratio and the three parameters are

discussed in [9].

The manufacturers use the frequency representation of an image to measure the

quality of its sharpness. This leads to the notions of point spread function, line

spread function, edge spread function, and modulation transfer function [9], which
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measure the sharpness of points, lines, and edges, as well as the system response

at a spatial frequency.

Medical measurements (and Receiver Operating Characteristic Curves)

The images of interest to the clinicians are complex anatomical objects. Simulated

measures resulting from the engineer’s and the manufacturer’s experiments do

not always correlate well with human subjective testing and perception. To remedy

this situation, numerical statistical analyses based on the receiver operating

characteristic (ROC) curves [10, 11] are used to examine medical image quality for

individual applications.

For medical images, subjective quality is often identified with diagnostic accuracy.

The limitations of diagnostic “accuracy” as a measure of decision performance

require introduction of the concepts of the “sensitivity” and “specificity” of a

diagnostic test. These measures and the related indices “true positive fraction” and

“false positive fraction”, are more meaningful than “accuracy”, yet do not provide

a unique description of diagnostic performance because they depend on the

arbitrary selection of a decision threshold. The ROC curve is shown to be a simple

complete empirical description of this decision threshold effect, indicating all

possible combinations of the relative frequencies of the various kinds of correct

and incorrect decisions. ROC curve is a plot of the true positive rate against the

false positive rate for the different possible cutpoints of a diagnostic test.

ROC analysis is related in a direct and natural way to cost/benefit analysis of

diagnostic decision making and can be employed to optimise various diagnostic

strategies [12].

In practical implementation a filtered version of a signal (target) with

superimposed Gaussian noise is sampled and thresholded. If the sample value

exceeds the threshold, the target is assumed to be present, otherwise not present.

A conditional probability, which is a function of the threshold, can be associated

with the decision, once stated whether the signal was present or not. An ROC

curve plots the true positive fraction (TPF, also called sensitivity, the complement

of the probability of Type I error) versus the false positive fraction (FPF, the

complement of specificity). TPF and FPF respectively represent the probability

that the target is detected when present, and the probability that it is detected

when it is absent. Depending on the threshold, TPF and FPF may assume different

values. In particular, if the threshold is very low, both of them equal 1, since every

occurrence of the target is correctly detected, but the target is always claimed also

when absent. On the contrary, when the threshold is very high, both FPF and TPF

are 0; in fact the target is never discovered when absent, but it is nev er detected

even when present. These considerations suggest an ROC curve representing a

trade-off between true positive and false positive decisions. Obviously, detection is

as much accurate, as much TPF is high, and FPF is low. The area underlying the

ROC curve (dashed line in Fig. 1) ranges between 0.5 and 1 and represents a
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quality index of the efficiency of the detection process. In particular, the value of

0.5 for the area is obtained when TPF and FPF are equal irrespective of the

threshold value (heads-and-tails decision). In this case the ROC curve is just a

straight diagonal line (chance line) partitioning the ROC plane [13]. Swets [11] has

experimentally demonstrated the relation between the false positive rate (FPR)

and the true positive rate (TPR).

The extension of ROC analysis to the medical field is not quite immediate. In

fact, decision thresholds are not easily definable as in signal detection theory,

where the origins of ROC are, but are implicit in the judgement of physicians. In a

ROC study, experts of the field, or typical users are asked to review the

reconstructed images after compression, which either did or did not possess an

abnormality and to provide a binary decision, i.e., abnormality present or not,

along with a quantitative value for their degree of certainty, usually a number from

1 to 5 (subjective trials). A subjective confidence rating of diagnoses is then used as

if it were a threshold to adjust for detection accuracy [11]. The diagnostic accuracy

of reconstructed images is compared with that of the original plain films. Since the

viewers rate diagnostic usefulness rather than general appearance or simply line or

edge patterns, these studies relate diagnostic accuracy to compression level. It

should be emphasised that the diagnostic quality is evaluated, not the efficiency of

observers. Radiologists can be trained to use the rating scale and the results can be

combined with assumptions on the nature of the data to produce summary

statistics reflecting the diagnostic accuracy [14–16].

The observers’ ratings can be brought back to thresholds adjustable to higher

detection accuracy, thereby originating points in the ROC plane [12]. A continuous

curve can then be produced by interpolating these points, in order to easily define

and obtain the requested quality measurement.

Certain statistical model, such as the bivariate binormal distribution, would be

used to test differences between ROC curves based on correlated data sets.

ROC analyses are used to quantify the compression levels in a specific medical

Figure 1 – Sample receiver operating

characteristic curve.
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application that can be used without a statistically significant change in diagnostic

accuracy. ROC analyses are, however, expensive and time-consuming to perform.

Caution must be expressed in the ROC evaluation, as its degree of significance

depends on the number of test images, and on the number of radiologists taking

part to the experiments [13]. A typical ROC study would require over

300 images to obtain a reasonable statistical confidence level, five or more

radiologists to view these images, and a full-time statistician to coordinate and

analyse the data [7].

Evaluating/Measure of Medical Image Quality According to Compression

Methods of evaluating image quality can be divided into two groups: 1) subjective

ratings such as statistical analyses of viewers’ scores on quality (e.g., analysis of

variance (ANOVA)), paired comparisons, receiver operating characteristics

(ROC) curves, sensitivity and positive predictive value and 2) objective rating

such as numerical Signal-to-Noise Ratios (SNRs), average distortion, average

difference, structural content, normalised cross-correlation, correlation quality,

maximum difference, image fidelity, weighted distance, Laplacian mean square

error, peak mean square error, (normalised) absolute error, (normalised) mean

square error, L
p
-norm [17] and graphical Visual Differences Predictor (VDP) [18],

histograms of the compression error [19], Hosaka plots [20], and Eskicioglu

charts [19].

Quantitative measures for image quality can be classified according to two

criteria: 1) the number of images used in the measurement; 2) the nature or

type of measurement. According to the first criterion, the measures are divided

into two classes: univariate and bivariate. A univariate measure uses a single

image, whereas a bivariate measure is a comparison between two images.

According to the second criterion, there are again two classes: numerical

and graphical. A numerical measure takes one (if the measure is univariate) or

two (if the measure is bivariate) images as input, and processes the pixel values

by an integration rule. The output of this processing is a single integer or real

number.

Table 1 – Classification of image quality criteria [21]

Subjective Objective

Numerical Graphical

Absolute Mean Square Error Visual Differences Predictor

Comparative Lp-norm Histograms

Power spectrum Hosaka plots

Other Eskicioglu charts
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A typical approach is to obtain useful statistics (activity in blocks, errors on edges,

block distortions, etc.) about the impairments in a compressed image. These

statistics are then combined in a weighted sum to represent the error

characteristics. Reduction of the output to a single value, however, is a major

drawback because much of the useful information is lost. Graphical measures do

not reduce their output into a scalar value. They are multi-dimensional measures

in the form of images, histograms, plots, or charts [21].

Quality measurements are usually made using the pixel elements of digitized

images. For more accurate assessment, a continuous image field can be generated

by two-dimensional interpolation of the pixel matrix [21].

Mean Square Error (MSE) measures punctual variations of the image intensity

by averaging the squared differences between couples of corresponding pixels.

Signal to Noise Ratio (SNR) and Peak Signal to Noise Ratio (PSNR), can be directly

derived from the MSE using equations, that assume that distortion introduced by

the coding-decoding operation can be modelled as a kind of noise [22]. Laplacian

mean square error captures information relating to edge features. Edge information

is known to be an image property to which the human visual system is highly

sensitive [23].

Subjective ratings are possible to divide to absolute and comparative evaluation

techniques. Absolute evaluation is a process whereby the observer assigns to an

image a category in a given rating scale, whereas comparative evaluation is the

ranking of a set of images from best to worst. Another technique belonging

to comparative group is bubble sort – observer takes two images A and B from

a group, and compares them. If his order is AB, he picks a third image to establish

the order ABC or ACB. If the order is ACB, then a comparison is needed

between A and C. The procedure ends with the best image at the top if no ties are

allowed [21].

Subjective methods are usually preferred in quality measurement in medical

applications. According to Cosman [8] lossy compressed images should be judged

by their use in making accurate diagnoses, i.e., a more natural and fundamental

aspect of relative image quality. Classical ROC analyses are the most credible and

acceptable way to measure the image quality by the radiologists, because they

include subjective appraisals of the value of an image for a particular application [7].

In a medical application it does not suffice for an image to simply “look good” or to

have a high SNR, nor should one necessarily require that original and processed

images be visually indistinguishable. Rather it must be convincingly demonstrated

that essential information has not been lost and that the processed image is at least

of equal utility for diagnosis or screening as the original [1]. Subjective rating results

may not be reproducible as they can be affected by a number of factors including

such as type, size and range of images, observers’ background and motivation or

experimental conditions (lighting, display quality, etc.) [21].
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Table 2 – Objective measurements of image quality [17, 22, 24]

Image Quality Measure Formula

MSE

SNR

PSNR

Average Distance/Difference

Structural Content

Normalised Cross Correlation

Correlation Quality

Maximum Difference

Image Fidelity

Weighted Distance Every element of the difference matrix is normalised

in some way and L
1
-norm is applied

Laplacian MSE*

Peak MSE

Normalised Absolute Error*

Normalised MSE*

L
p
-norm

*Note that for LMSE O{f ( i, j)} = f ( i + 1, j) + f ( i – 1, j) + f ( i, j + 1) + f ( i, j – 1) – 4 f (i, j). For NAE,

NMSE and L
2
-norm O{f ( i, j)} is defined in 3 ways: 1) O{f (i, j)} = f ( i, j); 2) O{f ( i, j)} = f ( i, j)

1/3
; 3)O{f ( i, j)}

= H{(u
2 

+
 
v

2
)

1/2
}f (i, j) where u and v are co-ordinates in the DCT transform domain, r = (u

2 
+

 
v

2
)
1/2

 and
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Sample Studies

Studies using either subjective, either objective methods

Some studies involve either objective either subjective methods, they use SNRs

and statistical analyses on viewers’ scores. Examples of such approaches may be

found in [15, 24–27]. When viewers rate diagnostic usefulness rather than

simply general appearance, these studies relate compression level to diagnostic

accuracy. In other studies, radiologists are asked to view an image which either

does or does not possess an abnormality and to provide a binary decision

(abnormality present or not) along with a quantitative value for their degree of

certainty. Subsequent statistical analyses, usually ROC-based, attempted to

quantify the levels of compression in a specific application that can be used

without a statistically significant change in diagnostic accuracy. There are

numerous examples of such approaches, e.g. [14, 16,17, 26–28]. In these

studies, the basic experiments were subjective and did not simulate the ordinary

tasks of radiologists. The observers were asked to rate numerically their

confidence or their opinion of image quality or usefulness rather than to make

diagnoses as they would under ordinary clinical conditions. This rating resulted

in data useful for ROC analysis, but it constitutes an artificial diagnostic task.

Furthermore, radiologists often face images, which may contain one or more

abnormalities, and the diagnostic task is to find any and all that are present. In

this case the task is not binary, and is not amenable to traditional ROC analysis

techniques. Lastly, some studies used paired comparisons, where an original and

a compressed image were displayed simultaneously and a radiologist was asked

to rate the difference. This procedure differs markedly from ordinary clinical

practice [8].

Cosman [8] applies a lossy compression algorithm to medical images and

quantifies the quality of the images by the diagnostic performance of radiologists,

as well as by traditional signal-to-noise ratios (“The traditional manner for

comparing the performance of different lossy compression systems is to plot

distortion rate or SNR versus bit rate curves” [8]). Her study is unlike previous

studies of the effects of lossy compression. She considers non-binary detection

tasks, simulates actual diagnostic practice instead of using paired tests or

confidence rankings, uses statistical methods that are more appropriate for non-

binary clinical data than are the popular ROC curves, and uses low-complexity

predictive tree-structured vector quantization for compression rather than

DCT-based transform codes combined with entropy coding.

In [29] Cosman describes three dominating approaches to the measurement of

medical image quality: 1) computable objective distortion measures such as mean

squared error or signal-to-noise ratio (SNR) and peak signal-to-noise ratio (PSNR),

2) subjective quality as measured by psychophysical tests or questionnaires with

numerical ratings, and 3) clinical simulation and statistical analysis of a specific

application of the medical images, e.g., diagnostic accuracy.



14) Prague Medical Report / Vol. 106 (2005) No. 1, p. 5–26

Smutek D.

In SNR approach Cosman emphasises that a distortion measure (in Cosman’s

work segmental and conventional SNR are used) should have three desirable

properties: easing computation, reflecting perceptual quality, and tractability in

analysis. Ideal subjectively meaningful distortion measure could be incorporated

into the system design. There are techniques for incorporating subjective criteria

into compression system design, but these tend to be somewhat indirect. For

example, it is possible to transform the image and to assign bits to transform

coefficients according to their perceptual importance or use postfiltering to

emphasise important subbands before compression [30]. These simple computable

measures have a role in the design algorithms and in the evaluation of quality

because they are quickly and cheaply obtainable, and tractable in analysis. On the

other hand one of the drawbacks of computable measures is that they do not take

in account the medical nature of the images.

In Subjective Ratings approach formalised subjective testing methods such as

Mean Opinion Score (MOS) and Diagnostic Acceptability Measure (DAM) are

mentioned with the reservation that there is no standardisation for rating still

images. For medical images, more important than subjective quality may be a

computable objective measure for predicting diagnostic accuracy. The common

method is plotting mean values of SNR against mean values of the corresponding

subjective quality and then fitting a curve to the resulting points. Many curves have

been considered, including polynomial splines, quadratics, and exponentials. The

residual sum of errors then provides an indication of the goodness of the fit.

Another popular method is to measure the correlation coefficient between the

fitted and actual data points [31–33]. A drawback of assessment of medical image

quality by perceptual measures is that it requires the detailed, time-consuming,

and expensive efforts of human observers, typically highly trained radiologists.

The most common mean of measuring diagnostic accuracy for computer-

processed medical images is based on receiver operating characteristic (ROC)

analysis. A variety of summary statistics such as the area under the ROC curve can

be computed and used for evaluation.

Cosman names several shortcomings of ROC: the necessity for the radiologists

to assign specific values to their confidence departs from ordinary clinical practice,

methods relying on Gaussian assumptions when image data are non-Gaussian (this

problem can be overcome by using computer-intensive statistical sample reuse

techniques which can help get around the failures of Gaussian assumptions). Many

clinical detection tasks are non-binary, in which case specificity does not make

sense because it has no natural or sensible denominator, as it is not possible to say

how many abnormalities are absent. Another two drawbacks are mentioned in [1]:

traditional ROC analysis does not come equipped to distinguish among the various

possible notions “ground truth” or “gold standard” in clinical experiments

(different kinds of standards are discussed in one of next paragraphs) and ROC

analysis has no natural extension to problems of estimation or regression instead of
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detection (for example, measurement plays an important role in some diagnostic

applications and there is no ROC analysis for measurement error). ROC studies

are also too specific to cover the wide range of medical imaging modalities and

applications [19].

Genuinely non-binary detection tasks (locating any and all abnormalities that are

present) are not amenable to ordinary ROC analysis techniques. Extensions to

ROC to permit consideration of multiple abnormalities have been developed [34],

but they require the use of confidence ratings as well as Gaussian or Poisson

assumptions on the data. Finally, ROC analysis has no natural extension to the

evaluation of measurement accuracy in compressed medical images.

Further Cosman points out that for measuring diagnostic accuracy, a “gold

standard” is needed first. She distinguishes four different gold standards: 1) a

consensus gold standard which is determined by the consensus of the three judges

on the original; 2) a personal gold standard which uses each judge’s readings on an

original (uncompressed) image as the gold standard for the readings of that same

judge on the compressed versions of that same image; 3) an independent gold

standard which is formed by the agreement of the members of an independent

panel of particularly expert radiologists and 4) a separate gold standard that is

produced by the results of autopsy, surgical biopsy, reading of images from a

different imaging modality, or subsequent clinical or imaging studies. She concludes

that the personal and consensus gold standards are most useful for comparing the

various compressed levels among themselves.

Because acquiring perceptual measures is very demanding (highly trained

specialists), it is desirable to find computable measures such as SNR that strongly

correlate with or predict the perceptual measures. Cosman’s work suggests that

cross-validated fits to the data using generalized linear models can be used to

examine the usefulness of SNR (or other computable measure) as a predictor for

subjective quality (or other perceptual measure).

Interesting Cosman’s conclusion is that radiologists are trained to interpret only

certain kinds of images, and when they are asked to look at another type of image

(e.g., compressed or highlighted) they may not do as well just because they were

not trained on those. But with image enhancement techniques or slightly

compressed images, perhaps a radiologist trained on those would do better when

reading those than someone trained on originals would do reading originals. This

corresponds to findings in [1] that the observers in particular expressed

dissatisfaction with the fact that the background in the digitally produced films was

not as dark as that of the photographic films, even though this ideally had nothing

to do with their diagnostic and management decisions.

Perlmutter [1] suggests that the protocol for subjective evaluation should

simulate ordinary clinical practice as closely as possible. Participating observers

should perform in a manner that mimics their ordinary practice as closely as

reasonably possible given the constraints of good experimental design. The studies
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should require little or no special training of their clinical participants. The clinical

studies should include examples of images containing the full range of possible

findings. Perlmutter describes a general protocol for performing clinical

experiment simulating ordinary practice and suitable statistical analysis for image

equality (quantifiable manner that a specific image mode is at least equal to

another). In comparison with others Perlmutter also takes in account that learning

and fatigue are both processes that might change the score of an image depending

upon when it was seen. In his work they looked for whether learning effects were

present in the management outcomes using “runs” test. They also segmented the

sample image into a region of interest (ROI) and a background. The background

was coded using the same algorithm, but at only lower bit rate. They report SNRs

and bit rates for both the full image and for the ROI. One of Perlmutter’s very

important conclusions is that all the differences due to digitisation and lossy

compression were small with respect to the differences among individual

radiologists (inter-observer variability). It suggests that great care must be taken

with any statistical analysis, which attempts to draw conclusions based on the

pooling of radiologists.

Studies using only subjective methods

Wu [35] uses both subjective and objective measurement for evaluating

compression algorithm in his research. Two radiologists verify that images are

acceptable for practical application (subjective quality of decoded image – they use

ROC protocol suggested in [36]) and peak signal-to noise ratio (PSNR), expressed

in decibels is used as objective measure. Wu states that “PSNR has been accepted

as a widely used quality measurement in the fields of image compression”.

Van Schelven [37] use ROC in comparing between Advanced Multiple Beam

Equalization Radiography (AMBER) and conventional screen-film radiography. His

study comprises patients with interstitial processes of lungs such as cryptogenic

fibrosing alveolitis and sarcoidosis without hiliar lymphadenopathy. ROC is

performed by nine readers (six senior and three resident radiologists) which use 5

point rating scale. One of interesting findings is that residents performed better

than radiologists (p = 0.054) in conventional radiography.

Gooley [38] uses ROC for comparison of statistical methods of image

reconstruction. He considers ROC to be an objective (not subjective as it is

according to others) as method for comparisons. Based on the responses of ten

observers, an ROC curve was constructed for each observer and each method,

and a value for the performance index known as the area under the curve (AUC)

was obtained from each of these curves. The AUC was estimated by use of the

non-parametric Mann-Whitney test as suggested Hanley [39]. The value for the

AUC for each method was then taken as the average value across all observers for

each method. Gooley uses “properly” trained students as observers and they use

six-point scale for image description. Interesting finding is that student observers
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perform as well as physicians (on simple detection tasks). Use of training before

observing is in discrepancy with Betts [40] and Perlmutter [1], who suggest that

such kind of studies should be performed without any special training and that they

should be as close to common clinical practice as possible.

Baudin [36] uses ROC for validating a compression scheme applied on digitized

wrist radiographs. He states that physical measurements as the error image or

SNR do not inform about critical artefacts, which are unacceptable from a medical

point of view. Thus he uses ROC, which takes into account the diagnostic quality

of the reconstructed images. ROC in his study involves five graduate radiologists.

They investigate the diagnostic performance of both original digitised films and

associated compressed/decompressed images using ROC methodology to analyse

the detectability of fractures of the scaphoid bone. Baudin pays great attention to

realisation of a medical image database, dedicated to the evaluation of the

diagnostic quality. The images in the database must represent the actual clinical

reality a medical expert is likely to encounter, whereas their capacity of diagnosis

must neither be too easy nor too difficult in order to bring the expert to use the

full range of his diagnostic capability. Original and reconstructed images were not

mixed during individual evaluation sessions, only one type of images was evaluated

per session without the reader knowing it. A minimum of one week was

maintained between two sessions of the same reader in order to minimise bias

due to the learning effect.

In [40] Betts uses statistic methods similar to ROC to determine whether lossy

compression affected the ability of a doctor to make a correct diagnosis. Six

board-certified radiologists were presented original and compressed images. They

were asked to determine whether any dominant findings were present in images

and if findings were present, to associate a classification. Independent two expert

radiologists established a gold standard. Separate examinations of sensitivity and

specificity were performed with respect to the gold standard and not independent

biopsy results. The statistics used in their experiment included McNemar’s test for

agreement counts, the Wilcoxon signed-rank test and a permutation t-test for

testing variance of sensitivity and positive predictive value across modalities. Betts

achieved some surprising results such as that lossy compression tended to have a

beneficial affect on sensitivity and specificity. He tried to explain it by fact that

compression artefacts forced the judges to study compressed images more

carefully, thus improving their sensitivity and specificity, or that wavelet coders

enhanced visual cues needed for correct diagnosis.

Slone [41] evaluates the degree of irreversible image compression by subjective

assesment of five observers (two imaging scientists and three board-certified

radiologists). Two versions of an image were compared on a single monitor by

using an interactive soft-copy feature on an image-comparison workstation. This

method is supposed to be very sensitive. It exploites the observer’s temporal

sensitivity to differences in the image, because the human visual system is naturally



18) Prague Medical Report / Vol. 106 (2005) No. 1, p. 5–26

Smutek D.

drawn to changes in structure or brightness. This technique allows detection of

subtle differences and provides a mechanism for comparing image quality loss

caused by different kinds of distortion (JPEG and wavelet-based trellis-coded

quantization (WTCQ) algorithms were used in this study). Slone uses three

different image evalutation methods: 1) two-alternative forced choice where no

ties were allowed (observer was forced to choose even if he percieved no

difference between images); 2) original-revealed two-alternative forced choice, in

which the noncompressed image was identified to the observer; and 3) a

resolution-metric method where observers decided which level of blurring most

closely matched, with respect to clinical utility, the level of compression. This

method alows to compare various compression techniques.

Perlmutter [42] shows another approach for investigation of the effects of lossy

image compression. He checks measurement accuracy in magnetic resonance

images compressed to five different levels using predictive pruned tree-structured

vector quantization (predictive PTSVQ). Three radiologists measured the

diameters of the four principal blood vessels on each image. Using t and Wilcoxon

tests no significant differences in measurement were found up to compression

16:1. The approach such as protocol, establishing gold standard, etc. were similar

as in his and his co-authors other papers [1, 29, 40].

Quality judgement across various algorithms and graphical measurements

Quality judgement across various algorithms such as JPEG (using discrete cosine

transform technique, public release of the Independent JPEG Group’s JPEG

software), EPIC (using wavelet transform technique, Vision Science Group, The

Media Laboratory, MIT), RLPQ (wavelet transform/fractals, Department of

Computer Sciences, University of North Texas), and SLPQ (wavelet transform/

fractals, Department of Computer Sciences, University of North Texas) is much

more complex since a wide range of image impairments is involved.

The choice of the compression techniques for an investigation of the

performance of quality measures (especially those that are graphical) is important

since it is desirable to include techniques, which produce different types of

impairments in the reconstructed images. The major types of degradation in the

images are blockiness with JPEG, blurriness with EPIC, both fuzziness and

blockiness with RLPQ, and fuzziness with SLPQ (The term fuzziness is used in the

sense of equal amount of blurriness over the entire image) [19].

In Eskicioglu’s [19] opinion a major problem in evaluating lossy techniques is the

extreme difficulty in describing the type and amount of degradation in

reconstructed images. He tries to find a quantitative measure, either in numerical

or graphical form, not only for judging the quality of images obtained by a

particular algorithm, but also for quality judgement across various algorithms

where a wide range of image impairments is involved. He compares the outcomes

of scalar objective quality measures with graphical measures called Hosaka plots
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and histograms. He states that the first mentioned quality measures are all

bivariate, exploiting the differences between corresponding pixels in the original

and degraded images. He shows that although some numerical measures correlate

well with the observers’ response (at first the images were subjectively evaluated

by ten observers) for a given compression technique and that they can reliably be

used to specify the magnitude of degradation in reconstructed images for a given

compression technique, an evaluation across different techniques is not possible.

This is because a single scalar value cannot be used to describe a variety of

impairments. He concludes that a graphical measure called Hosaka plots, can be

used to appropriately specify not only the amount, but also the type of degradation

in reconstructed images (particularly useful when the impairment is blockiness –

JPEG and RLPQ compressions) and that the Hosaka plots provide a good

indication of how images lose their fidelity. Histograms did not prove as useful.

To construct a Hosaka plot, or an h-plot, original image is segmented by

quadtree decomposition into certain activity regions. Five classes of blocks are

formed with this decomposition. Two features are computed for each class – the

average standard deviation of the blocks and the average mean of the blocks less

the average mean of the classes. With the same segmentation, these features are

also computed for the reconstructed image. Then features of reconstructed and

original image are compared [20, 43]. The difference between the two feature

vectors generates a vector error measure, which, unlike scalar quantities, allows a

description not only of the amount, but also of the type of degradation. Such

information is extremely helpful considering the sensitivity of the human observer

to the location of the image error.

In spite of these advantages, Hosaka plots could not properly describe the type

of loss, i.e., the nature and distribution of error. They provide limited information

concerning the activity levels in different areas of the reconstructed images. A

major drawback of Hosaka plots is its absolute measurement of the error in the

two features. It is not possible to know whether there is an increase or a decrease

in the standard deviations or the means of the blocks when the degradation level

in an image is changed [19].

Despite Eskicioglu does not recommend using simple scalar quality measures

(mainly because they do not represent different degradation of image caused by

different compression schemas, but also because their performance is poor with

higher compression ratio), he divides them into three groups: 1) Average

Difference and Structural Content; 2) N.Cross-Correlation, Correlation Quality,

Laplacian Mean Square Error and Maximum Difference; 3) Weighted Distance,

Peak Mean Square Error, Image Fidelity, N. Absolute Error, N. Mean Square Error

and L
p
-norm. The measures in Group 1 cannot be reliably used with all techniques

as the sign of the correlation coefficient does not remain the same. Group 2

measures are consistent, but nevertheless have poor correlation with the

observers’ response for some of the techniques. Among the useful measures in
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Group 3, NMSE is the best one for all the test images. Except for a single case, the

incorporation of the aspects of Human Visual System into NMSE makes the

correlation slightly stronger. Similar conclusion, that Human Visual System (HVS)

does not always improve the correlation, and when it does, the gain is small, can

be found in [44] and [45]. Nowadays there is enough evidence to show that simple

HVS models incorporated into numerical quality measures result in higher

correlation with subjective assessment. But some of the numerical measures

exploiting the HVS have limited use and scope as they are able to detect only a

particular type of distortion (mostly blockiness) [21].

Another (apart from Hosaka plots) measures, which take in account human

perception parameters, are information content and perceptual distortion

measure. Information content (IC) is based on the evaluation of the perceptual

distortion. It consists of five stages: 1) the original image is re-mapped by a non-

linear transformation; 2) a linear transformation on the DCT domain is applied to

8 × 8 image blocks; 3) a matrix of coefficients is calculated at fixed resolution;

4) the DCT coefficients are multiplied by the weights; 5) IC is computed by

summing the coefficient magnitudes. The perceptual distortion measure is

based on an empirical model of the human perception of spatial patterns.

The model consists of four stages: 1) front-end linear filtering; 2) squaring;

3) normalization; 4) detection [22].

Hermiston [46] presents a method of graphical and scalar image quality bivariate

measurement utilizing integer wavelet transformations. The measure can perform

a similar function to the Hosaka plot whilst not requiring segmentation and

threshold parameters. The measure can represent separately the components of

image distortion such as noise and blur through relative energy in the wavelet

transform subbands. However, according to Hermiston, the application of

graphical measures remains limited. He says it is more popular to use scalar image

quality measures, which represent image distortion in a more concise manner.

Through weighted summation, the graphical measure can be degenerated into a

single number. The scalar measure was then compared with other image quality

measures and found to present consistently high correlation with subjective image

quality assessment (active image analysts from military intelligence centres within

UK participated) using National Imagery Interpretability Rating Scale (NIIRS). Not

only proposed measurement, but also MSE, Image Fidelity, PMSE and normalised

MSE showed correlation with NIIRS assessment. The unexpectedly good

performance of MSE appears to negate much of the criticism of its low correlation

with subjective assessment. This finding is in concordance with [17]. When

subjective quality assessment was performed, it was generally recognised that

interpreting compressed imagery would become easier with experience of the

artefact characteristics that a particular compression algorithm can produce.

Another paper by Eskicioglu [19] evaluates the performance of Hosaka plots and

Eskicioglu charts. Mimicking the human visual system, they compute local features,
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and produce a graphical output. They are quantitative and general, facile,

inexpensive, and quick to apply, they are not affected by dc-shifts, and more

informative than scalar measures. They have the potential of determining the

perceived image quality, which eliminates the need for elaborate computations to

simulate the human visual system.

Eskicioglu charts are described in [17] and [19]. Eskicioglu starts with a similar

decomposition as for Hosaka plots, but he uses only four classes. Three features

are computed for each class and then normalised by the number of pixels divided

by the number of pixels in the entire image, the number of distinct pixel values

divided by the number of possible pixel values and by the average standard

deviation of the blocks divided by a preset maximum standard deviation. The

fourth feature for each class is the average of the end of block disturbances

normalised by a preset maximum disturbance. The features are displayed in bar

charts. The segmentation for the reconstructed image is obtained separately, and

the resulting bar chart is compared with that of the original. An alternative way of

displaying the characteristics of distorted images is to use the quadtree

decomposition of the original image. This modification, known as improved

Eskicioglu charts, eliminates the first dimension, allowing a direct comparison of

the respective features.

Eskicioglu concludes that the features, used in charts, represent the essential

characteristics of the image and that charts are suitable for classifying the major

types of impairment and expressing the nuances between the artefacts exhibited in

images. They can be used by researchers and manufacturers with confidence in

applying the lossy compression technology to medical imaging systems.

Not all authors use graphical quality measures for comparing between different

algorithms. For example Aiazzi [13] uses for comparing of his encoder (based on

an enhanced Laplacian pyramid) and JPEG compression two objective measures,

SNR and percentage peak error (PE), and subjective measure, ROC analysis, but

no graphical measure.

 Giusto [22] suggests four innovative methods for blockness distortion

measurement, two based on DCT analysis, and two on differential Sobel operator.

Block distortion, or tiling effect is typical of any kind of block-based coding

systems. It consists of a visual mosaic effect produced by the imperfect matching of

neighbouring approximated blocks. His methods evaluate the amount of this

particular but very usual image degradation. The proposed methods are evaluated

on standard, not medical images.

Cen [47] presents experimental and statistical framework for comparing

progressive progressive image compression algorithm (JPEG, EZW, and SPIHT)

which represent an image in such a way that the decoder can reconstruct the

image with increasing quality as more bits arrive. He says that traditional

measurements such as SNR or subjective quality judgments may be inappropriate

for evaluating progressive compression methods (In order to achieve good
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performance as measured by PSNR, progressive algorithms have often focused on

sending information on the largest DCT or wavelet coefficients first, in order to

minimise MSE distortion at a given bit rate.). Cen’s comparisons use response time

studies in which human observers view a series of progressive transmissions, and

respond to questions about the images as they become recognizable. His study

involves no subjective opinions; it directly assesses image recognition by having

observers respond to questions whose answer can only be known by recognising

the image content. The images he used for his experiment were not medical

images and observers were untrained persons.

Various Results Related to the Compression Level

Cosman [29] concludes that compression level with bit rate 0.56 bpp is

unacceptable for diagnostic use. Since the blocking and prediction artefacts

became quite noticeable at this level, the judges tended not to attempt to mark

any abnormality unless they were quite sure it was there. This explains the initially

surprising result level 0.56 bpp did well for positive predictive value, but very

poorly for sensitivity. Since no differences were found among 1.8 bpp, 2.2 bpp,

2.64 bpp, and original images at 12 bpp these three compressed levels are clearly

acceptable for diagnostic use in applications. The decision concerning levels 1.18

bpp and 1.34 bpp is less clear, and requires further tests involving a larger number

of detection tasks, more judges, and use of an independent gold standard that in

principle should remove at least one of the biases against compression that are

present in their study.

Wu [35] demonstrates the effectiveness of the employment of the adaptive

sampling algorithm to the DCT spectral domain. He concludes employing adaptive

sampling to the spatial domain can achieve a bit rate of 0.33 bpp with a PSNR

value of 37.85 dB. The bit rate achieved from spectral domain is 0.18 bpp with

a PSNR value of 42.82 dB (with processing size 16 × 16). Because his method

achieves a higher PSNR value than JPEG does, he deduces that the performance

of his method is better than JPEG under the same compression ratio. He also

suggests that different compression ratios are suitable for different imaging

modalities: for the decoded X-ray image compression ratio below 20 is acceptable

for practical applications, for an angiogram image the compression ratio of 45, for

the CT bone image the compression ratio 35, and for sonogram image the

compression ratio below 15.

Perlmutter [1] showed that digital mammograms and lossy compressed digital

mammograms using an embedded wavelet code at 0.15 bpp yielded image quality

with no statistically significant differences from the analog original (measured by an

appropriate clinical experiment and statistical analyses).

In one of Baudin’s [36] experiment, an area under the ROC curve constructed

for compressed images was higher than the one computed on an evaluation of the

diagnostic quality of the original, non-compressed images. This result can be
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explained by the fact that the compression method eliminates the visual effect of

high frequency noise, which is present in the original images. Other of Baudin’s

conclusion is that the average difference found between the area under the two

ROC curves for digitised original images and compressed (by their method) images

with 0.2 bpp is less than the average intra-expert variation (3–5%).

Slone [41] found the visually lossless threshold between 8:1 and 16:1 for JPEG

and wavelet-based trellis-coded quantization algorithm. JPEG baseline algorithm

resulted in performance as good as that with WTCQ compression at these ratios.

At x2 magnification, images compressed with either JPEG or WTCQ algorithms

were indistinguishable from unaltered original images for most observers at

compression ratios between 8:1 and 16:1, indicating that 10:1 compression is

acceptable for primary image interpretation.

Experimental Protocols

Choosing the proper protocol is necessary. There are several basic principles for

protocol design [40]: The protocol should simulate ordinary clinical practice

as closely as possible. In particular, participating observers should perform in a

manner that mimics their ordinary practice as closely as reasonably possible given

the constraints of good experimental design. The studies should require little or no

special training of their clinical participants. The clinical studies should include

examples of images containing the full range of possible findings, all but extremely

rare conditions. Statistical analyses of the trial outcomes should be based on

assumptions as to the outcomes and sources of error that are faithful to the clinical

scenario and tasks. Gold standards for evaluation of equivalence or superiority of

algorithms must be clearly defined and consistent with experimental hypotheses.

Careful experimental design should eliminate or minimize any sources of bias in the

data that are due to differences between the experimental situation and ordinary

clinical practice, e.g., learning effects that might accrue if a similar image is seen

using separate imaging modalities. The number of subjects should be sufficient to

ensure satisfactory size and power for the principal statistical tests of interest.

Also big attention should be paid to inter-observer and intra-observer variability.

The former essentially summarises the idea that different doctors might give

different diagnoses for a patient. Intra-observer variability captures the notion that

a doctor might give a different diagnosis for a patient upon a second or third

reading. No additional information is made available to the doctor but the

diagnosis changes. A good study will take both of these sources of variability into

account.

Prevalence of studied cases should be taken in account too – radiologists might

behave differently if they knew that the prevalence in an experiment were different

from that ordinarily encountered in a clinic. This effect could be analysed in a

quantifiable manner by varying the prevalence at different sites in a controlled

manner not known to the judges or assistants.
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Conclusion

Crucial task is to define an objective measure of image quality for the lossy

compression technology and put it into clinical environment. Ideal measure would

evaluate the quality of radiological images, covering not only the global parameters,

such as noise and bit-rate measurements, but also the local parameters, such as

texture and sharpness.

The traditional noise and bit-rate measurements are insufficient, because they do

not provide any information regarding the type of loss. On the other hand, besides

costly and time consuming to perform, ROC studies are too specific to cover the

wide range of medical imaging modalities and applications.
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